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ABSTRACT

This paper develops a technique for handling a class of plasma

kinetic theory boundary value problems where plasma flows are

taken account and then applying it to the problem of calculating

the impedanceof a grid pair through which a plasma is flowing

perpendicularly to the grids.

The Fourier-Laplace Transforms are used to solve the problem

after the inclusion of the boundary values into the differential

equations.

Graphs of the impedanceare obtained for various parameters.

It is shownthat the negative resistance, which Rydbeck showed

could exist using the cold-electron fluid theory, is a drift

phenomenonand does not exist for a stationary plasma. In

addition, it is also shown that Debyeshielding disappears when

the drift velocity becomesmuchgreate__than_the thermal velocity

of the plasma and that Debye shielding is directly related to the

fast wave of the cold electron fluid theory.
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I. Introduction

General Statement of the Problem

This thesis deals with two related problems -- one, which

will be called the physical problem; the other, which will be

called the theoretical problem. The theoretical problem

consists of finding a general mathematical method for the

solution of a class of one dimensional kinetic theory

plasma problems, especially those which take plasma flows

into account. The physical problem, which consists of finding

the impedance of a grid pair in a flowing plasma, is a

particular situation to which the mathematical method may be

applied and served as a motivation to develop the method. The

specific statement of the physical problem will be made first.

The specific statement of the theoretical problem will follow

the discussion of the kinetic theory approach (Landaul-Vlasov 2

theory) upon which it is based.

Physical Problem

Figures i and 2 give physical pictures of the system

under consideration. Figure i shows an external circuit which

drives the grid pair. There is a current flowing through

this circuit which is I eJWO_ where w is the driving
c O

frequency. The potential difference across the grids is

A_. If A is the area of the grids, the current density
o

fed into the plasma by the grids is I ej_Ot where I = A I .
O C O O



•

The impedance per unit area of the plasma and grids is therefore

z (_o) = A_ (i)
P I e jc°Ot

o

Figure 2 gives a picture of the hypothetical system to be

considered in solving the problem. A critical discussion will

be made in Chapter IV as to the applicability of the results

based upon this hypothetical system to a realistic physical

system. Two infinite grid planes are present in an infinite

plasma with current density I e j_Ot flowing out of one grid
o

at x = -x and into the other at x = x . The entire plasma,
o o

electrons and ions, is assumed to move so as to have a

zero-order or undisturbed electron velocity distribution with

a fluid velocity of u , which is perpendicular to the grids.
o

In order to have the zero-order velocity distribution

homogeneous in space -- that is, having no spatial gradients --

a strong magnetic field B will be assumed to exist in the
o

direction of the plasma flow.

The impedance of a mono-velocity (zero temperature)

flowing plasma has been obtained by Rydbeck 3, whose results

will serve as an excellent check upon those presented in

Chapter III. By using the Landau-Vlasov theory, the plasma

impedance will be obtained in terms of the velocity spread of

the zero-order distribution neglected by Rydbeck. Before
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describing the kinetic theory approach to plasma problems,

the electron fluid theory, upon which Rydbeck's work is

based, will be presented.

Electron Fluid Theory

This theory treats the electrons as a fluid immersed in

a uniform background of positive charge which is of such

magnitude as to give a total neutral charge. The electrons

of charge _ and mass _ are described by a particle density

n(x,t) and a fluid velocity u+(x,t) of the particles. The

dynamical fluid equations describing this system are the

continuity equation

_n -_

_-_ + V(n u) = 0 (2)

the force equation

÷ + e ÷ i
_-_ + (u • V)u = --m + u x mn V P (3)

where P is the pressure of plasma, and the full set of Maxwell's

Equations (presented in rationalized MKS units)

-+

V • E = pe/Eo (4)

V- B = 0 (5)

.->

+ _B

VxE + 2--[ = 0 (6)



1 ÷ ÷ _E
U VXB = J + g° _-_

O

(7)

where

Oe = e(n - no ) (8)

-> -9-

J = enu (9)

and where n is the equilibrium density of ions and electrons
O

in the plasma.

Starting from this set of equations, Rydbeck 3 obtained

the solution to the physical problem previously described

neglecting the pressure effect in equation (3).

In order to simplify the presentation of the impedance,

let's define two quantities by the following equation

1 X

Z (uo) = C [-J + (_ + j _ )] (i0)
P Uo o (i+ X )2 l z

where j = _-i, C is the capacitance per unit area of an
O

U 2
0

infinite parallel plate capacitor; X- • _ and _
2 1 2

Up

will be called the plasma resistance and reactance respectively.

The plasma frequency, Up, is defined by

e2n

UP 2 - g m° (Ii)
o



As can be seen, Zp(_O) has been divided into the impedance

of the grid pair in free space plus what will be called the

plasma impedance. The factor out front of the second term

of equation i0 is merely a computation convenience. In terms

of the separation between the grids C = Eo/2X .
' o o

Rydbeck's 3 results in terms of these newly defined

quantities are

-i

_i 2"_'- 0
0

(1-cos a+) (i - cos a )I

]
(l+_) 2

(l__X) 2 J

(12)

O

sin a+

(l+_X) 2

sin a_)]

(13)

where

0
O

2c0x
0 o

u
o

a+ = 0 ° (1 +'_)

a = 0 (1 -"_)
- 0

The significance of the above parameters will be discussed

with the presentation of the results later on in this thesis.



Kinetic Theory (Landau-VlasovTheory) of Plasmas

To describe the propagation of electromagnetic waves

in a plasma, Vlasov 2 proposed that the collisionless kinetic

equation (collisionless Boltzman equation) be coupled to

Maxwell's equations. He assumed that the "external" forces

in the kinetic equation, under whose influence the particles

move, are produced by the average electric and magnetic

fields produced by the motions of the particles themselves.

In 1946, Landau I published his famous paper in which he improved

the theory of self-oscillations begun by Vlasov and in which

he did the first boundary value problem in the kinetic theory

of a plasma. In Appendix C at the end of this thesis,

Landau's boundary value problem is done by the mathematical

method which will be presented in the next chapter.

The kinetic theory of a plama first consists of a kinetic

equation

_+ v
_t

___" + _e [E+v x (B+B)] • -
• m oax _v coll.

(14)

where B is an externally applied magnetic field, and E
O

and B are the average fields produced by the motions of the

electrons. Again as in the electron fluid theory, the frequency



of oscillations will be assumedto be so large that the ions

will not be able to keep up with the oscillation, and there-

fore they will form a neutralizing background. Whenthe

collision term in (14) is assumedto be zero, this equation

is called the Vlasov equation. For the major part of the

analysis, we will assumea zero collision term, since we are

assuming that the frequency of oscillation is a lot greater

than the collision frequency in a plasma (an assumption which

is true for most laboratory plasmas). Whena collision term

is necessary in our analysis, as to keep the impedance finite

when_o = _P' the following simple phenomenological non-

conservative collision term will be used

{_t_ = - n F (v))_(_-
oli. o o

(14a)

where the collision frequency _ will be assumedto be velocity

independent and F (v) is somezero order velocity distributiono

of the electrons which does not have to be an equilibrium

distribution. All that will be required is that the

function is constant or steady over many time periods of the

plasma oscillation. The set of Maxwell's Equations (4)

through (7) completes the set of equations for the electron

plasma if the current and charge density are defined as follows



Pe = e f f d 3 v
(15)

÷ + d 3J = e/ vf v (16)

where

= n F (v) +
O O

-> .a.

f(x, v, t) (17)

and

f F (v) d 3 v = 1 (18)
O

The plasma drift is included in this steady state distribution

by specifying that

u = / v F (v) d v (19)
O O

As in the fluid theory, the ions are assumed to form a

neutralizing background and do not participate in the

electron oscillations since the motion is too fast for the

heavy ions to follow.

In order to solve this equation a linearization procedure

is used since equation (14) is a non-linear differential

equation. The linearized form of (14) using equation (17) is

8f ÷ _f

a--[+v • --$
_x

+

_F

[_ + _] o e + Bo _f_e + v x • --+-(v x )- --/ = -vf
m _v m _v

(20)
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The set of equations (4) through (7) and (20) can be

decoupled into a set which describes longitudinal waves and

a set which describes transverse waves in the plasma. The

longitudinal set of equations will be shown to be all that

is needed to solve the physical problem described previously.

In order to show that the electric field of the longitudinal

waves can be written in terms of only a scalar potential,

we will introduce the scalar and vector potentials into our

equations.

->
÷ ÷ + _A

B = V x A and E = - V_- _--_ (21)

In order to show decoupling, let's first assume that the

quantities B, E and f vary like

--> ->

e x p[j(k ' x - _t)] (22)

Using (21), equations (4) through (7) and (20) become

en _F
-> -+ O -+ O

(_-k'v+j_)f +-- [_ -_A + v x(_ x _)]
m _ v

÷ _f
[$ x Bo] - 0+ J m ÷

_v
(23)

k • [k x A] = 0 (24)
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x [_ X _] = -_o J + -- [k_- 03A] (25)
c 2

-+

k • [_- _] = 0e (26)
-E-

o

k x [-k_ + 03A] = 03 k x A (27)

Equations (24) and (27) are identities, of course. The

proper gauge to choose to show the decoupling, where the

will describe the longitudinal mode and the A will describe

the transverse mode, is the coulomb gauge.

._ --> .->

V • A = 0 or k • A = 0 (28)

This makes equation (25) become

03 2 03 -+ -+

_(k2 c2 ) q" C--2 k _ = _o J (29)

and equation (26) becomes

_e

k 2 (_ =--
g
0

(30)

If k is dotted and crossed into equation (29), the resulting

equations are respectively

03 k 2 _ = BO__ • j (31)
2

C

÷ ___ ) = _o k x J (32)k x _(k 2 032 ÷
2

C
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Equation (32) described the transverse waves in the plasma

and (30) and (31) describe the longitudinal waves. In order

++
to prove the decoupling, we must now show that 0 and k'J

are independent of A and that k x J is independent of 4.

Using equation (20) and definitions (15) and (16),

the current and density terms become:

F+ -+ + -_ dF v(VXBo)" -_ d
= __2p gO v d3v k_- (v'A) _ • ÷° j _v

L _o-k.v dv ÷ ÷
m-k" v

(33)

0e=-_OP2 Eof d3v[ _- k •v->_(_i_)-AI " _d VdFO -l_j'e r

-+'+ _f dv
(VXBo)• -_

_v
-> ->

_o - k • v

(34)

To show this decoupling the following set of assumptions are

needed:

-p -_

i) u is parallel to k
O

2) lim F (v) = 0

-+ -_ -+ - >.

3) k • A -- 0 (A has no component in k direction)

4)
-). -+ -i-

F (v) is symmetric in v perpendicular to the direction of k.
O

In order to show that the last term in (34) and in the

expression for k . J disappear the following additional

assumptions are needed:
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i) k is parallel to B
O

-> -> -_

2) lim f(x, v, t) = 0

Ivl+

Using the listed set of properties and doing some simple

integration by parts in velocity space, the current and

density become

p =__, 2 g fjd3v . op o I_-k • ÷ +v dv

(35)

__,p2 oJ • k = gO (v • k)d3v -> _+ +
-k" v dv

(36)

I+ C0p2 gO ÷ k (v A) ox k = x v) d3v
-_ --> -->

w-k • v d v

÷ ÷ _f
(_x v)(v x _). --

/+J_ w-k • v

d3v

(37)

As can be seen this completely decouples the transverse

from the longitudinal waves. The longitudinal and transverse

electric fields are then given by the following equations:

->

E% = - V qb (38)
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÷ _A
Et = _t (39)

Wealso define transverse and longitudinal currents by

-> -_ -+

J = Jt + J% (40)

where V • Jt = 0

and V x J% -- 0

The equations which describe the longitudinal wave are then

en _F

_f -_ _f + o [-V_] o -_ f (41)
_t + v ÷ m ÷ '

_x _ v

and V 2 _ = - pe/go , (42)

V • (-go _--'_ V _ + J%) = 0 (43)

Equations (42) and (43) are redundant. Either one can be

used to describe the system with (41), and then the other

equation is a consequence.

Boundary Value Problems

Landau and a host of other people after, following his

lead, have done boundary value problems with time varying
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forces by the method of Fourier transforms. They first

eliminate the time derivatives in the equations by assuming
jwot

that all dependent variables vary as e and then take a

Fourier transform of the space coordinates. A problem arises

in taking the inverse transform though. What is the proper

contour to take for the inverse transform? The solutions

of the one dimentional longitudinal wave problem by transform

methods usually has the following type of solution

+_o Oo(k) e3kx d k
_(x, t) = / (44)

-_ k2 _o K(_o' k)

where the dispersion function is defined by

_ + oo (d FoJd v)d v
K(_, k) = i- P-_ f

v - _/kk 2 _oo
(45)

and 0o(k) is the transform of the boundary conditions_ These

problems are done using the collisionless form of (41). As

can be seen, the path of integration in the inte_ral in

Equation (45) passes through a singularity if k is real.

Landau and others resolve this problem by saying _ has a
o

positive immaginary part due to the fact that the force

was turned on in the past. Some deform the k-contour in

(44) off the real axis so that k is complex in the integral

in (45). These two methods turn out to be identical in
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content and ultimately depend upon the initial value problem,

causality and the radiation condition. This will be discussed

thoroughly in the next chapter.

Another method of doing boundary value problems is to

develop an orthogonal expansion for the set of equations.

Shure4' 5 following Van Kampen6 and Case7 developed an

expansion for the one dimensional problem where drifts are

not encountered. This method has difficulties in that one

has to develop a new orthogonal expansion and prove

completeness for every different alteration that is madein

the differential equations which describe the physical system.

Specific Statement of the Theoretical Problem

In light of the difficulties in both of the above

procedures for doing boundary value problems of this type,

an unambiguous method is to be sought for doing plasma drift

problems using transforms. A generally useful method is

also sought for introducing boundary values into the

differential equations to make the transform method easy to

us e.
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II. Theoretical Method

Simple Physical Problem

Let us first consider the physical problem for the

zero temperature stationary plasma from the point of view

of the fluid theory. In the solution of this problem, the

introduction of boundary conditions by the use of

generalized functions will be demonstrated. Let's first

define two generalized functions and the relation between

them. These "functions" and their theory are thoroughly

discussed by Lighthill 8, and Vander Pol and Bremmer 9 .

The first is the Heaviside 9 unit step function which is

defined by

U(x- x ) =
0

1 (x-x)>0
O

0 (x- x ) < 0 (46)
O

1/2 (x - x ) = 0
O

The second is the 6-function which is defined by

b f(x ) if a< x < b
O O

f f(x) 6(x - x ) dx =
O

a 0 if x < a or x > b
O O

where f(x) is any arbitrary continuous function. These

two functions are related to each other by the fact that
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dU(x- x)
O

d x

= _ (x - x ) (47)
O

We will now utilize these two functions to incorporate

boundary conditions into the fluid equations.

Equation (43) represents a very general result and is

a statement of the continuity of the total current; that is,

that the sum of the conduction and displacement currents

is a constant in space. It follows immediately by taking

the divergence of equation (7). Since a current is coming

out of one grid and into the other, the total current between

the grids must be equal to this current in the external

circuit. In the region outside the grids the total

current is zero because there are no sources of current

other than the grids. Expressing the above statement in

symbols yields the following equation

÷ J_o t

- gO _--t V_ + J = Io e i [U(x + Xo ) - U(x - Xo )]

(48)

where _ is the unit vector in the x-direction.

The particle continuity equation (2) is derived

under the assumption that there were no sources or sinks

in the system. Including the effect of the grids, the

continuity equation becomes
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_n + I _j_0t
-- -- e [6(x + x ) -6(x- x )1_t + V(n u) = oe o o

(49)

Because n and u are both dependent variables, equation (49)

and the force equation (3) are non-linear and therefore

will be linearized. Since the external driving term in

equation (48) is only in the x-direction this problem

reduces to a one dimensional space problem in the x-direction.

The linearized, one dimensional forms of (48), (49) and

(3), assuming that the drift of the plasma is zero, are

then

_ J_o t

- gO St _x + en u = I e [U(x + x ) -U(x - x )]O O O O

(5O)

_n I _ Io J_o t

_T + no _ u = --e e [_(x + Xo ) -6(x - Xo )]

(51)

e[_-_ = m --_x
(52)

J_o t
Assuming that _, u and n, vary as e and combining

equations (50) and (52), the three stated quantities
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have the following solutions

_ I j_o to O
= - . e [U(x + x ) -U(x - x )]

EZ _x JE 0 (_02_p2) 0 0

(53)

2

e n u = -I O [U(x + x ) - U(x - x )] (54)

o o (_o2_ _p2) o o

J_o t
I e

o o [6(x + x ) -_(x- x )] (55)

e n I = j (_0 2_ _p2.) o o

(As can be seen from Equation (53) the change in E

the grids is given by

across

J_o t
+ _0 1 e

VE_ = o o (56)

Eoj (_o2-_p 2)

which is the familiar boundary value for the normal electric

field across a sheet of charge obtained from equation (55).)

If now we integrate (53) from one grid to another to

get 4_, the impedance defined by (i) of the grid pair in

this description becomes

2x

Z ) = o 0 - __L[__ i (57)

p(_O Jeo Wo2-a_2 _O Co (i - X)
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this makes (from Equation (i0))

= 0 and $ = (i +_) (58)

i 2 (i -_f_)

Notice that _ in (58) is the first term in Rydbeck's
2

expression (13) for _z" Rydbeck's results contain the

effects of the drift of the plasma, which we have neglected

above, and reduce to our results when the drift u is made
o

to go to zero.

The above results were relatively easy to obtain.

When we try to do the problem by the kinetic theory of

a plasma using transforms, problems arise as had been

stated at the end of the previous chapter with regard to

making the integral in Equation (45) well defined. The

specification of the principle of causality will remove the

ambiguity from Equation (45). The discussion in the next

section involving transforms, causality, and the radiation

condition will define causality precisely and will show

how it can be incorporated into the mathematics very simply.

Transforms and Causality

Two of the most frequently used transforms in wave

theory are theFourier and Laplace transforms. The Laplace

transform is used most frequently to do initial value problems;
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that is, certain initial conditions are specified on the

set of differential equations and one wants to know how

the system behaves sometime after t = 0. The Laplace

transform is the natural set of transforms to do this

problem. If h(t) is somefunction of time for which (59)

converges, then its transform in e-space can be defined by

oo

H(e) = f h(t) e-jet dt (59)

0

The inverse transform is obtained from

1 / H(e) ejet dt (60)
h(t) = 2

C

where the contour C is a contour below all poles in the

complex plane -- usually below the axis of reals going from

e = -j6 - _ to e = -j6 +_o as shown in Figure 3. This
i 1

contour below the axis of reals insures that the integral

will be convergent. As can be seen the time integral only

goes from 0 to _. There is an implicit assumption here

that h(t) = 0 when - _ < t< 0. In fact this is the assumption

that is used to derive the Laplace transform from the

Fourier transform. What we are saying when we use this

transform is that there is no disturbance in the medium

until t = 0 when some force excites it. The inverse

transform then gives us the solution to the set
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of the differential equations after t = 0.

The use of the Laplace transform described above is

naturally connected to the principles of causuality. The

definition of the principle which pertains here is that

prior to the application of a force on the plasma, no

disturbance is observed in the medium. This is the appropriate

definition since we are looking for the steady state

response of a system to a sinusoidally varying force

which has been turned on at some time in the past, before

which the system was undisturbed. As can be seen the use

of the Laplace transform embodies in it the principle of

causality just stated° Another discussion of the

appllcation of causality to plasma oscillation problems has

recently been discussed by H. Gelman I0 who approaches

the problem from the theory leading to the "Kramers-Kronig

dispersion relations"_ [Note: The term dispersion relation

used here has a different meaning than that used to describe

equation (45).] This different approach is not at all

surprising since the "K_amers-Kronig dispersion relations"

are derived using the principle of causality.

The statement made above about the "turning on of the

force in the past" is exactly the justification that Landau 1

used to say that _ has a small negative immaginary part

which makes the integral in the dispersion function well

defined. More will be said about this later.
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It could well be asked whether taking the Laplace

transform in position space -- where x is substituted for

t and it's transform variable k is suhstituted for _ --

is warranted from the physical standpoint. In this way

one might be able to introduce a boundary value of the system

at x = 0. The success of this method would depend on whether

it were physically possible to have h(x) = 0

for - _ <x <0 o This is not generally possible as

Sturrock II points out. Rolland12 has developed a method

of finding an inverse transform starting out with the

Laplace transform in space by throwing out parts of the

solution which do not satisfy the physical conditions.

However, he says that this method is not generally applicable

for plasmas.

There is no natural way to introduce boundary values which

are intrinsic to the classical exponential Fourier transform,

however this transform includes the entirety of space from

- _ to + _ and therefore does not possess the samedifficulty

that the Laplace transform does. There is a difficulty

however that one must assumethat a function and its

transform must both be square integrable. This limits the

class of solutions which can be handled by this method. The

development of the "theory of distributions" by Laurent

Schwartz, which was expoundedby Lighthill 8 as the "theory
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of generalized functions" and which is used extensively
9

by VanDer Pol and Bremmer in their book on Operational

Calculus, extended the class of functions which have

fended themselves to the solution by the transform

method and madethe introduction of boundary conditions using

transform theory possible. The introduction of boundary

conditions into the differential equation was demonstrated

in the previous section. The extension of the class of

functions amenable to the Fourier transform method is

demonstrated in Appendix C in doing Landau's problem by these

methods.

The use of the Laplace transform in time is also related

to the radiation condition in a forced oscillation boundary

value problem° Whenyou solve a problem using the Laplace

transform you are saying that at some time (t = 0) you turn

on a force. This disturbance then is located in the

vicinity of the radiating oscillator at t = 0 and progresses

awayfrom the oscillator as time goes on. The Laplace

transform then gives only outwardly going disturbances as

we take t _ _ and transients die out,

This section serves as an introduction and a justification

for the use of the Laplace and Fourier transforms in the

next section to solve the physical problem by the kinetic

theory of plasmas°
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Kinetic Theory Problem

The set of differential equations which can be used to

solve the physical problem using the kinetic theory are

equation (48) or (42) and the one dimentional form of

equation (41)

_-_ + v-_x + o _ o =- _f (61)m -_x dv

where v is now the x-component of v. Since we will now

only be dealing with the one dimentional form of the dif-

ferential equations where the other components of v will

be present, the F and f will now be understood to be the
o

previously defined function integrated over the other two

components of velocity space. With thls change, the

current and charge densities are now defined by

+ oo I eJ_0ti

Pe = e f f dv + o _ [6(x + x ) -6(x - x )]
j O O

- oo O

(62)

_- oo

J -- e / v f dv (63)
-- OO

where J is the current in the x-direction. Again the

justification of only using the one dimentional form of the

equations is that the external force on the system only

produces changes in the x-direction as can be seen from
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equation (48) whose one dimentional form is

_ J_ot
- Eo _x_t + J = Io e [U(x + Xo) -U(x - Xo)]

(64)

The current in (63) is essentially defined as before. The

charge density Pe is redefined, however, to include an

"external" charge density. Redefining pe in this way

eliminates the necessity of including the external sources

in the kinetic equation (61) as was done for the continuity

equation. Oneway of interpreting (62) is that the charge

at any point is madeup of the external charge given by the

second term and the plasma charge given by the first term.

This is an oversimplified view of what is happening in the

system however, since physically the two charge densities

are really indistinguishable. Equation (64) or, alternatively,

the one dimentional form of (42) can be used with (61) to

obtain the solution of the physical problem. The one

dimentional form of (42) is

J_ot
+oo Ie

_2_ e f f d v + o [6(x+ x ) -6(x x )]
_x 2 gO - oo JCO0 o o

(65)

It will be used instead of (64) to solve the problem.
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It can be shown that equations (65) and (64) give the one

dimensional continuity equation without sources. The

following Fourier transform in space and Laplace transform

in time will be used to solve the problem:

(k, _)
i

f (k, v, _0)
1

_- oo 0o

S dx f dte+J(kx - o_t)

-- oo 0

_(x, t)

f(x, v,

(66)

_(x, t)

f(x, v, t)

-_- oo

1 I do0 f dke- j(kx - o_t)

(2_) 2 C _ oo
f (k, v, _0)
i

(67)

where the contour C is the contour defined in figure 3

below all poles of the functions _ and f in the complex
I 1

e-planeo The method will consist in calculating _(-Xo)-_(x o)

and then throwing out all transient terms since we are only

interested in the steady state part of the solution.

Multiplying equations (61) and (65) by ej(kx - _t) and

integrating x over the range - _ < x < + _ and integrating

t over the range 0 < t < _, the following transform
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equations are obtained

en dF
_f - v k f + o k _ _ = + j _ f (68)

I i m 1 d v i

+ _ I 2j

_k 2 _ = e _ f dv o sin k x (69)
1 eo _ _ 1 mo(_o- m) o

Equation (68) does not have an initial value in it because

we have assumed it to be zero. An initial value would give

transient terms which are not of interest here. Further,

let's assume 9 is equal to zero since in our analysis we

are assuming _o >> 9" 9 will be brought back into our

calculation in one specific instance when it will be needed

to keep the plasma resistance finite. Since _ is dependent
1

of v, _ can be solved for if f is solved (68) and inserted
I I

in (69) to give

2j I sin k x

(k, _) = o o (70)

I EO _o(_o - _) k 2 K(_, k)

where dF

_ 2 + oo ----0-°d v

K(_, k) = i p _ dv (71)

k 2 - oo v - m/k
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Taking the transform of (70) and then computing

A_ = _(-Xo) - _(Xo) we get

41 " + _ sin2k x dk
A_ = o f d_e j_t f o

E (27) 2 C _O(_O - _) - _ k 2 K(m, k)
O

(72)

The solution for the impedance is then

Z (_O) lim 4 / d_eJ(_-_o ) + _= f sin2kxodk

P t-_° _oEo(2_) 2 C (_o- _) - _ k2K(_, k)

(73)

The Dispersion Function

The dispersion function K(_, k) defined by (71) is an

important function that determines the characteristics of

solution (73). The use of the combined Fourier-Laplace

transforms determines precisely K(_, k) for our problem.

Since the _-contour of the inverse transform is below the

axis of reals, _ in the definition of K(_, k) in equation

(71) is complex with a negative immaginary part (the

stipulation that Landau I made). This means that the

v-integral in equation (71) is well defined since it does

not pass through any singularity when k is real (Note: It

must be kept clear in one's mind that there are three complex

planes to deal with; the v-plane the _-plane and the
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k-plane. Unless these three planes are kept distinct

a great deal of confusion can result.) Since the integration

contour of k is real, the analysis of K(w, k) will be made

for real k. Whenk is positive w/k is below the axis of

reals in the v-plane and when k is negative w/k is above

the axis of reals in the v-planer If w/k approaches the

axis of reals from above and below two different limits are

obtained for K(w, k). K(w, k) can then be related to two

different anlytic functions for k positive and negative

K(w, k)

K+(w, k, uo) for k> 0

K (w, k, u ) for k <0
-- O

1 - X for k = 0

(74)

These functions K+ and K_ can be analytically continued to

the axis of reals in the w-plane by the use of the

following limit formula

_- oo oo

lim / G(x) dx G(x)dx
= p f $ j_ G(Xo) (75)x - x +'-._ x - x

E->+0 O _ --oo O

where p means Cauchy Principle value of the integral about

the pole x = x .
o

Using (75) we obtain that the analytic continuation of

K+ and K_ to the axis of reals in the w-plane becomes
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e dF
+ oo O

-- dv
K ± (_, k, u ) = l -_ p f dv

O k 2 -oo v + u -00/k
o

2 dF °__p
+ J_ k 2 _d-_- v = _/k - u°

(76)

The v-integration has been translated by v ÷ v + u so as
o

to make F have its mean value at v = 0. The limits of
O

analytic continuation can be schematically represented by

the v-contours shown in figures 4.a and 4.b for K+ and

K_ respectively -- the semicircles representing 1/2 the

residue about the poles.

Next K± will be analyzed for positive real _ in the

entire k-plane since this will be all that is needed to do

the problem as will be shown later. K+ and K_ are defined

initially in their respective half planes in terms of

K(_, k). If k = kR + jk I then K(_, k) --K+(_ k, u )' O

for k I > 0 and K(_, k) = K_(_, k, Uo ) for kl< 0. (Note:

K(_, k) is K_ or K+ depending on whether _/k has a positive

or negative immaginary part respectively.) To discuss

K+ and K_ as analytic functions in the entire k-plane,

we must be able to find functions which suitably continue

K+ and K_ to the rest of the complex plane. These

analytic continuations are accomplished by defining
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idFolK+(_, k, Uo ) = K(_, k) + 2j _ _k2 _--_vI kl<

v=_/k-u
o

(77)

K (m, k, u ) : K(_ k) - 2j _ _p_e I dF°l kl> 0
- o ' k 2 _-_v]

v=_/k-u
o

(78)

It is easy to see that analytically continuing equations

(77) and (78) to the k-axis of reals by (75) yields (76)°

This is all that is needed to prove that (77) and (78)

are the analytic continuations of K+ and K_ to the entire

complex k-plane.

Knowing the above facts the following interesting

relations between these two functions result (they will

be useful in proving a few theorems):

K+ (_, k, uo) = K_(_, k*, Uo ) (79)

and

K (_, -k, u ) = K+(_, k, u ) (80)-- O O

where * denotes the complex conjugate. Now the following

theorems, useful in the understanding of the theory, will

be proved.
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Theorem I: k. is a zero of K+(_, k, u ) if and only if1 O

k.* is a zero of K (_, k, u ).
1 -- O

This follows immediately from relation (79). The zero

of a function is defined by

K+(_, ki, u) = 0 (81)

Taking the complex conjugate of equation (81) and using

(79) we obtain

K_(_, ki* , u) = 0 (82)

The converse follows similarly.

Corollary I: k. is a zero of K+(_, k, u ) if and only if
1 O

-k.* is a zero of K+(_, k, -u ).1 O

This follows directly from Theorem I and relation (80).

There may be an infinite number of k.1 zeros to K+ or

K as when F (v) is a Maxwellian distribution. But no
-- O

matter how many zeroes of K+ exist there is one, called the

characteristic zero, which appears in the !eft half of the

upper k-plane when _ < _p. This is proven in Appendix D.

General Form of the Solution

/TON
Taking the limit t _ _ in equation _1_j means that the

steady state solution, which exists after the transients

have become negligible, is being sought. It is well known
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that self-oscillation results due to a single humpdistribution

F (v) decays in time. The initial value effects due too

the turning on of the oscillator are self-oscillation

effects and dampout. Therefore the steady state result

which is time independent is due to the pole at w= _ .o

Therefore by closing the w-contour through the upper e-plane

by meansof a semicircle whose contribution tends to zero

as the radius of the semicircle tends to infinity, we

get the steady state result of the w-integration which is

2_ times the residue of the pole at w= _o" Any other

poles or cuts in the upper w-plane must yield transient

terms.

This result is the sameas would have been obtained if

Landau's method of assuming that all dependent variables
jwot

vary in time as e were used instead of using the

Laplace transform. As we have shown Landau's assumption to

makeK(w, k) well defined is equivalent to using the

Laplace transform in time.

The general form of the solution will be investigated

now. Evaluating the w-contour as the residue of the

w=_ pole, equation (72) becomeso

+ _ sin2(k x ) dk
Zp(Wo) = -J 2 .... f o (83)

Woeo _ - _ k 2 K(_ , k)
o
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The reason for wanting to know all the relations

described in the previous section was to make the k-integration

more susceptible to the Mittog-Leffler 13 partial fraction

expansion theorem which allows us to show the general

structure of the solution. The k-integral in (83) can

be rewritten as

+co sin2(k x )dk 0 sin2(k x )dk sin2(k x )dk
f o f o += f_ 0

-_ k2 K(_O, k) k2K (_o' k uo) 0 k2K+(_ ° k, u )--_ - _ _ O

(84)

Transforming the integration variable of the first integral

of the right hand side of (84) by k ÷ -k equation (84)

becomes

f¢o sin 2 (kx o)dk

oo k 2 K(_o, k) 1k 2 (_o,k,Uo) + K+(_o,k,-Uo

(85)

The following modified partial fraction expansion can be made.

A m B.
i o l

= -- + Z
kZK+(_o,k ,uo) ,_2 i=i k (k-ki)

(86)

B m B.
i o i

= -- + Z
kZK+(_o,k - ) k 2 *

' Uo i=l k(k+k i )

(87)
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where K+(_o,k,Uo) has m zeroes (m maybe infinite). The

justification for writing (86) and (87) is madein Appendix

A. By using properties (79) and (80) to relate B, to A.
i i

and evaluating the residues at k = k of both sides of (86),
l

the coefficients become

1
A = B =
o o i - X

k°
1

* i i
B. = A. - p _0Jp

z K+ (C°o ' 2 ko

d k _

k=ko
1 (88)

Integral (85), using (86), (87) and (88), becomes now

oo sin2(kXo)dk = _ Xo + Y,m [A 7°° sin_(kXo)dk
]oo k2 K(_O' k) (I-X------_i=l i o k (k - k.)

i

* co sin2(kXo)dk ]

+ A. f , J (89)l o k(k + k° )
1

The zeroes k. and -k. are symmetric about the imaginary axis
i i

below the axis of reals except ior two characteristic zeroes k.
i

and -k. which migrate above the axis of reals when 2 .
z _ pI_o

becomes greater than 1. A proof which demonstrates that one

zero of K+(_o,k,u o) appears above the axis of reals when

X > 1 and u > 0, and on the imaginary axis if u = 0 is
O-- O

presented in Appendix D.
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The following identities relating the integrals of (89)

to known functions will be useful.

oo sin2 (kXo)dk i

£ k (k+B) = [y "+ in (2Xo6) - go(2Xo6) ] (90)

where IArg 61 < g and Y -- Euler's constant, go(2Xo6)] is one

of the two co-functions of the sine and consine integrals which

are described thoroughly in Appendix A. It is useful for

computational purposes to have the real part of the argument

of go(Z) positive. The following relation makes this always

possible.

[-Izil + Jzr sgn(zi) ]go(-Z) = go(Z) + _j sgn (zI) e

(91)

where z = zr + j z I

and where

sgn (x) --

+i x>O

-i x<0

0 x--O (92)

One more relation, determining the complex conjugate of

go(Z) and being useful in relating the two integrals of the

ith term, is

go (z*) *-- go (z) (93)
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where go(Z) = Rgo(Z) - j I go(Z)

First of all, we will assumethat the real and immaginary

parts of k.1 are negative where k.1 = -a.1 - Jbi ' therefore

-k. = +a. - jb (a. and b are positive ) Applyingi l i" l i

relation (90) to the integrals of the ith term and applying

relation (91) we obtain

+co sin 2 (kx o)dk A.

T = A. Y i [ in2xo0 ii i k (k k.) = -2k---7Y + + j 0.-- i
--oo I i

-b. + ja i ]- go(2Xo[ai + b.j])+ 7. e i
I j

(94)

* +oo sin 2 (kx) dk A.
S. = A. f o l [

, = ----/ [Y + in2Xo0 i - j 0.
l i -oo k (k + k. ) 2k. i

l i

- go(2Xo [ai - biJ]) (95)

=_ai2 2where Oi + b i
and

b °

0. = Arctan
1 a.

i

Adding equations (94) and (95) gives

(k_) [ ( _ i) _ e-b'+ja]_T.I + Si = Re j -_- O - jIgo(2Xo[a i +Jbi] ) - _ j

-b i+j ai ]

- jim y + in(2Xo0 i) - Rgo(2Xo[ai +Jbi] + __ j e ]

(96)
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Secondof all, we will consider the characteristic
2

0J

zeros, defined by k 1 for PP--- = X > 1. They will be written
2

0
as

k I -- -a I + jb I

-k I = +a I + jb I

where aI and b I are positive.

Applying relation (90) to the integrals of the i_th term

we obtain

A 1

TI : --_i [Y + in (2Xo01) - J _i - go(2Xo[al - blJ])] (97)

S 1 =--

A1

2k
i

Y + in2Xo01 + J(_l - _) - g(2Xo[al + Jbl])

+ j _ e-bl + Jal] (98)

These equations will be used in the next section to obtain

Z (_o) for a particular zero-order distribution function.P
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III. Calculations and Results

Zero order Distributions and Zeroes

It could be suggested that an analysis could be made for

a zero order velocity distribution which is an equilibrium

distribution with a drift such as a maxwellian. However, due

to the fact that K+ has an infinite number of zeroes when

F (v) is an equilibrium distribution such as a maxwellian, it
O

would be extremely difficult to do a complete analysis of

Z _(_0). In order to obtain the gross features of Z (_o) asP P

a function of the various parameters, a simpler zero order

distribution will be used, namely the Lorentizian shaped

dis tribution,

f-- "I

i l(v- u )2 |-i
o + 1F (v) [ J0 ITO" 0. 2

(99)

where o represents the width (and therefore is analogous to

the temperature effects) of the distribution and where v is

the x-component of the velocity vector. This single humped

distribution fulfills the symmetry requirements imposed by the

preceding theoretical discussion. The usefulness of (99) exists

in the fact that it produces simple results for K+ (_o,k,Uo),

K+ (_o,k,Uo) = 1

name ly

2
CO

_ P

[k(u° + jo) - _o]

2 (!oo)
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whose zeroes are

= (u° - Up)(Uo- jo)
k 1

2 02U +
0

(u° +Up) (uo- jc)
k 2 = 2u + 0 2

o

(lOl)

(Note that k I is the characteristic zero previously discussed.)

The next section will show the details of the calculation for

Zp(U O) using k I and k2.

Impedance of a Grid Pair in a Plasma

Using relations (96), (97) and (98) of the last chapter

and relation (i0) defining the plasma resistance and impedance,

$i and _2 due to (99) become

Mln 0_

+ Ig o(a+ [I-jM]) + MRg o(a+[l-jM]) _ [it +_i [Ig o(]a_[ [I-jM]
/

+ MRgo(la_l[1-jM]) 2_@0 i - e (cos a+ - Msin a+)

- i -_x] [i - e-Ib-I (cosla_l - M sin la_l)] (102)

_2 =

-(i +%_x) I

(i -_) 20o_
e-b+(sin a+-M cos a+) + M)

+ _ : _._1 - (sinla_l - M cosla_l) + M

(i 3)
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where e is defined after equation (13) and where
o

d
M =

u
O

= Arctan M

e (i ±_)
o

a+ =
I+M 2

0± : la±l_1 + M 2

When M ÷ 0, that is when the velocity spread becomes infinite-

simal with repsect to the drift of the plasma, it can be

easily seen that equations (102) and (103) become the same

as Rydbeck's results (12) and (13) if one realizes that

!

lim Jlgo(a±[l - Mj]) = 0

M+0 I (104)
Rgo(a±[l - Mj]) = finite value

Two particular limits of (102) and (103) are of special

interest, that is, the limit as X + 0 (the driving frequency

limit) and the limit as X + i (the driving frequency equals

the plasma frequency). It is not at all obvious, at first

glance, that $i and _2 converge to finite quantities in these

limits. It turns out that there are no problems as X ÷ 0.

_i and _2 are both finite in this limit.
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lim 4 IX_O _i = 7o Ig(a°[l-Mj] - °°1U

- _ (a° y sin a°

+-_o 1 - e (cos a + M sin a o) (104)

lim 2
X__O _2 =_ -

O

O

I _b °
e (sin a - M cos

O ao)

- (i + cos a ) (105)
O

where b -- a M,
0 0

0
0

a --

o I+M 2

and f (z) = Rf (z) + j Ifo(Z) is another co-function of the
O O

sine and cosine integrals described in Appendix A.

When X ÷ i, there is the difficulty of _i ÷ _ but none

with _2 however. This is due to the fact that (I __)2

appears in the denominator of the terms with go(Z) in _i"

There is the exception that _i is finite when M = 0 in this

limit, however.

In order to make E1 finite the collision frequency

previously described must be retrieved. Since we still are

assuming that _ >> _, _ need only be included in the
P

characteristic zero k I. This is accomplished by the substitution

and only keeping the largest term involving _, we obtain
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lim

x÷l

1

0

1

2@
o

%
o

+--

I+M 2

yM - _ + Mln0+

I -b+
1 - e

1 - 2--! +--M (3 - 2,()•n- "n-

Igo(a + I-Mj] + MRgo(a+[l-Mj]) 1

(cos a+ + Msin a+)l

_ inC + M2]

(106)

lim
-i

g2 - 2e
X-_l 0 e b+ (sin a+ - Mcos a+) + MI

+1 (107)

where Y @
o

C 1 =
I+M 2

y = __
o]
0

The first few terms in the expansion of E1 and _2

about 8o = 0, in the various limits of X, are:

For arbitrary_ exceptin$_ = 1

-2_ i)

-M25 . _- _. { +
T

E 1 = _ _ [M_-iOM2-3] + 12

M(y + inp± ]

+- 6-'Z _ [M4 - 2M2 + 5]_ 80

- in I_- v_ ..... +

[M _ + I][i - 3M 2]

(1o8)

(i +_X) 2/(I + M_<) 4

M(I_IS)_0 _ }
0 [M_-2M2+5! +...

z_24 [M 2 + i]
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For arbitrary X exceptin$ X = 0 and X = 1

+ o
u(_-l) + ...

(109)

For X = 0

0 M i 2 [i + 2M 2]
_2 = o + _ 0 + ...

(i + M2) o [i+ M2] 2
(ilO)

For X = i

l

-2 8o M y @ 3 )

= z 1 + M z log _ + o _-25 M[M 4 - 10M 2 - 3]

_2
6 [M2 + i] 4

[i + M2] 3 [M2 + 1] 4

(lii)

-0 M 2 3 [M2 - i]
_2 = o + @ + ... (112)

i + M 2 _ O [I + M2] 3

The plots of _i and _2 versus 8o for various values of X,

including X = 1 and X = 0, and for M = .01, .i and 1.0 are

made in Figures 5, 6, 7, 9, i0 and ii using the relations

just given. Appendix B discusses the numerical techniques

used to calculate go(Z) and fo(Z) for various re_ions_ in the

complex plane in order to obtain these graphs. In figures

8 and 12 plots of _i and _2 versus @o are made for M + _
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whereMeO = eo. Before proceeding to the discussion of the

graphs, the significance of the parameters M, X and e should
O

be mentioned.

Sisnificance of Parameters

M is the ratio of the "thermal velocity" to the drift

velocity [see expression after equation (103)]. When M Z 0

the effect of the drift of the plasma is dominant, and when

M + _ the "thermal effects" are dominant.

is the ratio of plasma frequency to driving frequency.

<< _ . There are problems
The limit of + 0 means that Wp o

of validity of the theory in this limit and more will be said

concerning this in the next chapter. When X = i, that is

= _ , the system is at plasma resonance.
o O

0O, defined by

2x

_ o o , (113)
o u

o

is as much a time parameter as a space parameter. If the

time it takes for a particle of velocity u to traverse a
o

distance 2x , and the period of oscillation of frequency
o

00
O

are defined by

2x
o

t =
o u

o

and

217
T -

o O3
0
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then the following relation results from (113)

0
o

t - T (114)
o 2_ o

Relation (114) shows that e is the measure of time spent
o

between the grids by a particle traveling with velocity Uo,

similarly, Oa is a measure of time for a particle with

velocity _.

In order to interpret 8° and 8a as space parameters, it

is useful to introduce the Debye shielding length, which

is an important parameter in plasma theory. The Debye length

(%D) is a parameter which is a measure of the distance that

the electric field, produced by a test charge in a conducting

medium, is cancelled out by the shielding action of the other

particles in the medium. %D can be related to the analogous

thermal velocity and plasma frequency by the following equation

%D = _- (115)

From (115) it is easy to set up the following relations

2x = 8 __X kD (116)
o o M

2x = 80 _ %D (117)
o

Because %D is a measure of the shielding by a plasma, it is

a quantity which naturally determines a division between

microscopic macroscopic effects in the plasma. Macroscopic
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pertains to fluid theory effects and microscopic pertains

to that which can be more correctly described by kinetic theory.

The concepts just discussed will be very useful in

explaining the characteristics of the graphs of E1 and _2"

Description Graphs

Figures 5 to 8 show the graphs of E1 (the resistive

part of plasma impedance) versus @ and @ for various values
O O

of X and M. The figures from 5 to 8 are arranged so as to

give a progression of graphs of E1 from the drift dominant

case to the thermal dominant case° Likewise figures 9 to 12

show graphs of _2 versus 80

drift to thermal dominanceo

and 0 arranged from eases of
o

The graphs of _i and _2 for

M = .01 figures 5 and 9 are sufficiently similar to those

of M = 0.0, so that they are not reproduced here.

A most interesting observation from the graphs of the

resistive part of the impedance E1 is that for the drift

dominant case there is a possibility of negative resistance

when X < i. As the value of M goes from 0 to _ the

probability of the appearance ol this negatlve value of

$i gradually disappears. From the graphs there is no

possibility of negative reslstance when M + _.

Another important fact concerning E1 is that at plasma

resonance (_p= w o) the resistive part of the plasma impedance

would go to infinity if no collisions were included into the
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calculations. The graphs of $i are plotted using a ratio of

collision frequency to plasma frequency (Y) shownin and

after equation (107) as 10-4. This is not at all an unrealistic

value.

The graphs show that the reactance of the plasma, _2'

can be either inductive or capacitive. As 90 or 9d becomes

very large compared to unity, _2 in figures 9 and 12

assymptotically approaches the value of $2 obtained from

the cold non-flowing electron fluid calculation shown in

(58). As can be seen, the plasma has a tendency to be

> _ and inductive when _ < _ .
capacitive when _o P o P

A final observation is that the wave structure of the

graphs disappear as M varies from 0 to _. These observations

will be discussed in the next chapter along with a critical

discussion of the theory.

The graphs of _i and _2 which have been discussed

were plotted from computation made with the IBM 7074 computer.

Appendix B shows the methods used to compute go(Z) for z in

different parts of the complex plane.
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IV. Discussion

Introduction

This chapter includes discussions on three basic areas

of the theoretical research. The first consists of giving

an explanation of the observations made of the impedance

graphs. The second consists of gi_ing an analysis of the

limitation of the applicability of the physical theory. The

third consists of comparing and contrasting this theoretical

work with that done by other investigators.

Discussion of the Graphs

The most interesting characteristic of the resistive

graphs is the possibility of negative resistance when X < i.

The fact that this negative resistance gradually disappears

as M goes from 0 to _ indicates that this is a drift related

phenomenon. A negative resistance means that energy is

being transferred from the plasma to the external c_rcuit;

a positive resistance means a flow of energy in the reverse

direction.

Two questions one could well ask are: "What is the

mechanism of energy loss in the plasma?" and "What is the

source in the plasma of the energy that the external circuit

absorbs?" The clue to the answer of both these questions is

in the observation that negative resistance can exist when
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there are drifts. In fact this negative resistance occurs

when there is no thermal energy, as in Rydbeck's problem.

The only energy source available is the drift kinetic energy

of the plasma. Then the energy absorbed from the plasma

must be due to the net deceleration of the plasma. Similarly

one of the principle mechanismsin the drift dominant case

for energy absorption from the external circuit must be a

net acceleration of the drift kinetic velocity of the

plasma.

The principle mechanismsfor energy absorption for a

thermal-dominated plasma M _ _ would be Landau damping and

the transport of energy due to particle diffusion from inside

to outside of the region between the grids. Landau in 1946,

following Vlasov, showedthat it was possible to have damping

of plasma waves in a plasma even if the collision frequency

in equation (61) was zero. Somepeople have therefore

spoken of this phenomenonas collis±onless damping° This is

not accurate terminology however. True, short range or

close collisions are neglected when we set _ = 0, but

the average long-range collisions effect, that is, the Electric

field, is still present° It is these long range "collisions"

that are the cause of the plasma osci!!ations. In the next

section a study ol the energe_ics of the plasma is done to

show the transport of energy to and from the region between

the grids.
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Another interesting phenomenonconcerning E1 occurs

at plasma resonance (x = i). It seemsstrange that intro-

ducing collisions into the system decreases the resistance

at plasma "resonance". This fact can be understood better

if we realize that we are speaking of a process which is

assumednot to be collision dominated and that "resonance"

as understood in this plasma effect is different from the

normal use of the term. In the normal use of the term,

resonance meansthat condition of the system where the power

absorption of the system from a particular forced oscillator

is a maximum. This maximumoccurs for a certain driving

frequency of the oscillation.

In an actual experimental situation the force put on

the system would be the electrical potential put across the

grids. In this situation the time average power absorbed by

the plasma would be given by

1 IA I R( o)
p = (118)
o R2( o)

where Z(Wo) = R(_O) + j X(_o ). Equation (118) shows that

the power goes to zero as R(_ o) + _ when _ = _ . Thereforep O

plasma resonance produces a minimum instead of a maximum

power transfer. The resistance going to infinity for a

particular oscillating potential also means that the external

current goes to zero. This can be thought of as an open
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circuit. What is actually happening at this plasma "resonance"

is that for a collisionless plasma the charges can move

fast enough to set up a potential difference across the grids,

without the flow of acurrent in the external circuit. When

collisions are included, they impede the motions of the electrons

and, thereby allowing currents to flow in the external

circuit and therby effectively decreasing the resistance of

the plasma.

The plasma reactance _2 behaves like the well known

result presented by equation (58) as e° and @Ogoes to _.

Of course equation (58) has a singularity at _ = _ and oneo p

cannot determine the impedancethere from the simple fluid

theory leading to (58). if one inc±uu_s uu±±_=.... s .......

calculation of the impedanceand first takes the limit as

÷ _ and secondly takes the limit as _ ÷ 0, then _i ÷ __o p

and _2 ÷ 1.0 which are the samelimits our results have for

=_ when @ and 0 ÷ _.
o p _ o

Another observation which was madeconcerned the

disappearance of wave structure in the graphs as M varied

from 0 to _. This fact points up the different nature of

the plasma in the two limits of drift dominanceand thermal

dominance. Whenthe plasma is drift dominant (M + 0), the

plasma has a wave nature. WhenM = 0, the solution of the

electric field can actually be written as a superposition of

two traveling waves of the form
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w ± w
o _ x)

J (_O t u

E+ e o

These waves have a group velocity of u whose wave fronts
o

travel away from the grids in the direction of the flow of

the plasma. Even when the phase velocity of one of the waves

< _ , the group velocity stillbecomes negative, when _o p

remains positive and the disturbance propagates away from the

grids only in the direction of the flow. There is no distur-

bance in the plasma on the left side of the grids in this

drift dominant limit. In simple terms the motion of the

plasma through the grids carries the plasma oscillations

away from the grids. In a zero temperature plasma there

cannot be propagation of a disturbance due to longitudinal

waves unless the plasma is moving.

In contradistinction to the drift dominant case, the

disturbance in a thermally dominant plasma cannot in general

be wirtten in terms of a simple superposition of traveling

waves. In the thermally dominant case, the plasma has

diffusion associated with it. In fact one can consider the

13
electric field as diffusing instead of propagating as

waves through the medium.

Enersetics

This section will show that the time average power fed

into the plasma by the external circuit equals the time average

energy flux across the surfaces bounding the region between
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the girds. In order to show this to be true we need an

equation to describe the energy conservation in the system.

This equation can be obtained by calculating the second moment

of the Vlasov-Boltzmann equation (14), that is, multiplying
2 +

equation (14) by v and then _te_rating over all v-space.

This produces the following energy equation

_--_(n _mv ) +-_ (n mv

=J'E
(119)

-_ ->

The current J and electric field E are those which are pro-

duced in the plasma itself. If we take the dot product of

E with equation (48) where E = -V_ we get

g
0 ^-DE2 ÷ ÷ ÷ ÷

+ E • J = E " Jext (120)2 t

->

where Jext -- Io cos _o t [U(x + Xo) - U(x - x )].
O

Combining (118) and (117)we obtain

+ 7<myv>
_-_ _ + n<l mv +--$x n

=E • J
ext

(121)

The time average of (119) for a steady state periodic

oscillation gives zero for the time derivative term. If we

write Jext and E in their complex time dependent forms the

time average of (121) becomes
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Z (i 2 I + *
--$ (n,z mv v>) = g Re [[ • Jext ] (122)
_x

where the bar denotes time average.

In order to obtain the expression we want, we must

integrate (122) over the region of space between the grids

bounded by the grids with some cross sectional area A. This

gives us

x
o

<i 2+>+ A {Je*xt/ n mv v • d_ = _ Re [ / Ex dx} (123)
S --X

O

where s represents the surface surrounding the volume. But

x

o j_o t

f E dx = A_ = I e Z(_ o)x o
-x

o

(124)

Therefore

I 2

1 f n mv ' dS = -- (125)
A s _ 2

Equation (125) is the statement made in the beginning of this

section. The left side of (123) is the energy loss rate

per unit area due to energy flux across the grids. The right

side is the power fed into the grids by the external circuit.

Equation (125) helps make negative resistance more plausible.
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Negative resistance meansthat there is a net time average

energy flux into the volume bound by the grids.

Limitation to the Applicability of the Theory

In introducing the influence of the external circuit on

the plasma, we included the influence of the current in our

equations but neglected the effects the magnetic field

produced by this current. In essence we neglected the

magnetic compared to the electric field effect of the

external circuit. In order to see what limitations this

assumption puts upon the applicability of the theory, we

must look at a finite electrical system since the magnitude

of the magnetic field in this situation depends upon the

dimensions of the system. For purposes of discussion, we

will consider that the system consists of a cylindrically

shaped plasma passing through two parallel disc grids where

the radius of the discs and the cylindrical plasma are

both R . Figure 13 shows a sketch of the finite system and
O

the cross section of the cylindrical plasma between the

grids. Since it is assumed that the total current is

homogeneously distributed over the cross section of the

plasma, the maximum magnetic field exists at the boundary

of the plasma and has a magnitude given by

Ro_ o
B(R ) = -- I

o 2 o (126)
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The magnitude of the electric field produced by uniform

charge densities produced on the grids by the external circuit

is given by

I
O

E = (127)

O O

The ratio of the force produced by the magnetic field to the

force produced by the electric field on the charges of the

medium must be very small in order to be able to neglect

the magnetic effects. This statement can be expressed by

v B
c

<< 1.0 (128)
E

where v is a characteristic velocity of the plasma -- either
c

or u depending on whether the plasma is drift or thermal
o

dominant. Inserting (126) and (127) into (128) yields the

condition

v R << 2c 2 (129)
O c o

where c is the speed of light in free space. Another condition

which must be met is that the radius of the grids must be

much larger than the spearation of the grids in order to

neglect fringing field effects or

R >> 2x (130)
o o
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Using the definition of 00 in (113) we can combine conditions

(129) and (130) to give the condition

2c 2
e << (131)
O vu

co

which is the condition which should be easily satisfied for

the non-relativistic plasma that we have. (131) should not

be considered as replacing condition (129) and (130) however.

It is produced so as to show that the conditions called for are

not at all unrealistic. The conditions just developed

should be considered a sufficient condition for the

applicability of the theory. The theory may be valid outside

the ranges given.

Results Related to Those Obtained by Others

This thesis contains a method which extends plasma

kinetic theory boundary value problems to include problems

which deal with the drift motion of the paslma. We will

compare our results with those obtained by Landau I Shure 5

.18
and Cercighani and Paganl who do not take drifts into

account. In the kinetic theory of plasmas treated by

these men, an important role is played by the function K(e, k)

given by (71) which has been alternstlvely called the

dielectric function, the dispersion Junction and the

characteristic function° Since the works of Shure and Landau

illustrate the two different approaches to plasma boundary

value problems -- the normal mode and transform method
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we will show the connection between our subsidiary function

K±(_, k, u) and the corresponding functions defined by these

people. If we makeF (v) in (71) the Maxwell-Boltzmann
O

distribution as Landau and Shure did, then K±(_, k, u) can

+

be related to Landau's Kl(k) and K2(k) and Shure's A-(_)

by the following equations

K+ (_, k, 0) = i - K2 (k) = A- (132)
- 1

where v I =_kf T = absolute temperature, k =
:V¥ , o

Boltzmann's constant, and m = mass of the electron.

We know of no work outside of this thesis that deals

with the impedance of a grid pair in an infinite plasma using

kinetic theory even without the inclusion of a drift effect.

However, Shur_, and Cercignani and Pagani 18 do consider the

problem of a plasma between infinite capacitor plates.

Shure considers the capacitor plates to be perfectly

reflecting walls and therefore does not permit the plasma to

diffuse through. His results show the existence of Landau

damping at certain resonant frequencies and that the impedance

reduces to the stationary cold plasma case (57) as ours does

when the distance between the plates becomes very large. How-

ever the electric field in _._eC_"_'s p_b1=m_V-_ ......ran always be

written as a superposition of traveling waves unlike ours

which cannot. We have attributed these additional terms to

the effects of the diffusion of the plasma through the grids.
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Cercignani and Pagani take collisions into account and

consider the plasma capacitor with two different types of

boundary conditions upon the velocity distribution function.

The first boundary conditions was the sameas in Shure's

problem, and the second assumedthat the electrons diffused

through the walls with a Maxwellian distribution. Their

results reduces to Shure's when the collision frequency was

madeto go to zero for the first boundary condition. For the

second boundary condition, their results again reduced to

(57) as the distance between the plates becamemuch larger

than the Debye length.
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V: Summary and Conclusions

Statement of the Problem

This thesis dealt with two related problems called the

theoretical and physical problems. The theoretical problem

consisted of finding a mathematical method for the solution

of a class of one dimensional kinetic theory problems, in

particular a class of problems which take plasma flows into

account. The physical problem, which consisted of finding

the impedance of a grid pair in a flowing plasma, is a

particular situation to which the above mathematical method

may be applied and served as a motivation to develop the

method.

Rydbeck 3 obtained the impedance of a grid pair in a

flowing plasma using the cold electron fluid theory of a

plasma. His results showed that it was possible for the

impedance to have a negative resistive part. These results

motivated us to find out whether it was possible to predict

negative resistance if thermal effects were taken into

consideration.

Method Used

In order to include thermal effects into the calculation,

the kinetic theory of plasmas (Landau-Vlasov theory) was used.

No thorough investigation had been made of how the inclusion

of an average flow velocity would effect the dispersion
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function (71) in that theory and therefore the general

characteristics ol the solution of such problems in the

kinetic theory of plasmas. This lack motivated us to

develop the mathematical method for such problems which

could be applied to our physical problem.

The linearized Vlasov equation coupled with the Poisson's

equation were used to solve the problem. The drift or

plasma ilow was included as the meanvelocity of the zero

order electron distribution function. The boundary

conditions produced by the grids on the plasma were included

into the differential equations by using generalized

functions. The differential equations were then solved for

the potential difference across the grids using Fourier-

Laplace transforms.

In order to obtain the gross features of the impedance,

a simple Lorentzian distribution was used. Graphs were

then plotted of the resistive and capacitive parts of the

plasma impedance as a function of a space parameter (or time

parameter depending on the viewpoint) ior various values of

the ratio of plasma to d_iving frequency and various values

of the ratio of the width of the Lorentzian distribution to

the flow velocity. (This width is considered analogous to

the Maxwell-Boltzmann dist[ibution.)
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Results and Conclusions

The results, like the problems, can be divided into two

groups -- the first set of results dealing with the graphs

and the solution to the physical problem and the second set

dealing with the basic theoretical results comparing the

behavior of a flowing plasma to that of a stationary, plasma.

The graphs show that it is still possible t.ahave negative

resistance when thermal effects are added to the calculation

of the impedance of a grid pair in a plasma. It also appears

that this negative resistance is a drift dominarLt effect

caused by a net deceleration of the plasma flow for a certain

combination of parameters of the system. There is no

possibility for negative resistance when there is no drift

however.

Two important theoretical, results are those that

4
are obtained by Theorems II and III in Appendix D. Shure

showed in his thesis that the characteristic zero k I of the

function K(_,k) which lies on the immaginary axis for

X > i (Theorem II) accounts for the fact of a dynamic Debye

shielding of an electrical disturbance in the plasma. The

existence of the zero on the immaginary axis is necessary

for dynamic Debye shielding, if the zero moves off this

axis, the electric field is no longer shielded by the plasma

but the disturbance produced by it propagates in the direction

of the flow of the plasma. One should probably expect
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someremnants of Debyeshielding to remain, however, if the

flow velocity of the plasma were less than the thermal

velocity. This shielding would probably be modified and

one would expect an anisotropic shielding to exist in the

direction of the flow of the plasma. As the flow velocity

gets larger than the thermal velocity all remnants of

shielding eventually disappear and pure wave propagation

exists as is shownin the cold electron fluid theory.

A further result shows a connection between the slow and

fast waves of the cold electron fluid theory and the

characteristic zero kI. The waves excited by a driving

frequency mohave the following wave numbers

±_
o pk=

u
o

The plus and minus in the above expression refer to what

are called the slow and fast waves respectively. For

> _ the wave number of the fast wave lies on the
p o

negative real axis. When the drift velocity u > 0 the
o

characteristic zero k I moves into the complex plane left

of the axis of reals. As u becomes much
o

larger than o (the width of the zero order electron

distribution), k I migrates onto the negative real axis

and becomes the fast wave. This then leads to the conclusion

that it is the fast wave which is associated with Debye

shielding.
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Su$$estions for Further Research

The results presented in this thesis in no way represent

the final words on the problem under consideration. Here

are some suggestions as to further work related to this

thesis which could be done.

A more accurate theory to solve the impedance problem

would require a relativistic kinetic theory and also

would have to take into account the finite boundaries of the

system. There have already been some attempts to include

these considerations in various kinetic theory plasma

problems, but, the surface has barely been scratched 20'21.

Also collision terms which are more physically

realistic, that is, which conserve particles, momentum or

energy such as the Crook and Folker Plank collision models

could also be included so as to give a better study into the

effects of the collisions upon the resistive part of the

plasma impedance.

The method of including the grids into the differential

equations could be used to analyze the properties of a

multigrid system in a plasma. A complete analysis of any one

system of grids in a plasma by the kinetic theory of plasmas

should prove to be a thesis problem in itself.

Some work has been done, notably by Gould 19, on

predicting the propagation of disturbances away from a
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grid pair in a stationary plasma using kinetic theory.

Gould did not consider the problem of coupling the grid

pair to the plasma. Gould's problem could now be redone in

the light of this thesis. His problem could also be

extended to include the effects of the drifting plasma.
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Appendix A: Special Functions and Partial Fraction Expansion

Auxiliary Functions

Two important functions used in this thesis are the

auxiliary functions of the sine and cosine integrals. They

are defined by

fo(Z) = Ci(z) sin(z) - si(z) cos(z)

go(Z) ---Ci(z) cos(z) -si(z) sin(z)

(A.I)

(A.2)

where z = x + jy and

z

Ci(z) = y + in z + f

0

z
sin(t)

Si(z) = f
t

0

si(z) = si(z) - 7/2

cos (t) - i
dt (larg z I < 7)

(A.3)

dt (A.4)

(A.5)

Other representations of fo(Z) and go(Z) are

_ -zt

f (z) f sin(t) dt = f e= , (larg z I < 7/2)
o o t + z o t2+l

(A.6)

_ -zt

go(Z) = f cos(t)t+ z dt = f te-- dt , (larg z I < _/2)
o o te+l

(A.7)

fo(Z) and go(Z) can also be related to the exponential

integral El(Z) by
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go(Z) -- 1/2 [ejz El(JZ) + e-jz El(-jz)]

f (z) = 1/2 [ejz El(JZ) - e-jz El(-jz)]
o

(A.8)

(A.9)

where larg z I < 7/2

oo -t

and El(Z) = / et
z

dt (A.10)

An important relation which we have not seen in any

book but which can be derived using the above relationships

and more extensive list of relations in the "Handbook

of Mathematical Functions" edited by Abramowitz and Stegun,

are

lim

6 + +0

lim

6++0

go(i6-jy) -- - cosh(y) Chi(y) + sinh(y) Shi(y) + _ je -y

(A. ii)

e-y
f (+6-jy) = j [cosh(y) Shi(y) -sinh(y) Chi(y)]+ _o

(A.12)

where cosh(z) and sinh(z) are the hyperbolic cosine and sine

respectively, and

j Shi(z) = Si(jz),

z cosh(t) - 1

and Chi(z) = y + in(z) + f t
o

dt.

(A. 13)

(A.14)

It is important to notice that, while Si(z) and Shi(z) are

entire functions in the complex z-plane, Ci(z) and Chi(z)
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have a cut starting at the branch point at z = 0 and

continuing down the negative real z-axis to -_. (A.1)

and (A.2) point up the fact that fo(Z) and go(Z) also have

this cut.

To conclude with these functions, we give the differential

formulas for relating go(Z) and f (z). They areo

df
__£o =
dz -go (z) (A.14)

and

dgo -I
= -- + f (z) (A. I5)

dz z o

Partial Fraction Expansion

Modified partial fraction expansions (equations (86)

and (87)) were made in Chapter II in order to simplify the

calculations. This section shows how this type of an

expression is equivalent to the normal partial fraction

expansion which can be made.

If K + (_o' k, u o) is an analytic function which has N

zeroes k. of order one, the Mittag-Leffler partial fraction
i

expansion theorem says that the following partial fraction

expansion may be made

N+I

,. _ _1 A k--AI I A.= o + + l (A. 16)
k z

_+_o'k'Uo ) k 2 k- k.
k=2 1
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If we multiply (A.16) by k and then take the limit as k + _

we obtain
N+I

AI = - I A._ (A.17)
k=2

since K+(_,k,u o) ÷ i as k ÷

Wecan now replace the sum in (A.17) for AI in (A.16)

and add to get
N+I

A k.A.
i = _ + V i l

k2 K+(_o'k'Uo) k2 k=2/" k(k-ki)

which is the modified expansion we used.
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Appendix B: Methods of Computation

In order to obtain the graphs of $i and _2 computer

calculations were made for various values of X and M

shown and at intervals of (.1)7 for eO and 0 . There

already existed computer routines to calculate sin(x),

cos(x), exp(x) and log(x) but none to calculate Ci(xz),

Si(z) or El(Z) (z = x + jy) for complex argument so that

programs had to be developed to do these calculations. The

following sections explain the methods of calculation for

various ranges of x and y.

i00 > Izl > i0 and lar$ z i _ 7/4

For this range of values the following approximate

expression was used with (A.8) and (A.9) in order to

obtain f (z) and go(Z)o

3
Z W.

e El(Z) = Z i

i--I z + x.
I

+ E (B. i)

where x. are the zeroes of the third Laguerre polonomial
i

L3(x) and Woz is the corresponding weight function of the

Laguerre quadrature integration given on page 923 of

reference 16. The error for the given range of the variable

is lei < 3 x 10-6. The error analysis of (B.]) _a_ done

by J. Todd 17. This formula was used to do the calculation

for graphs of _i from five through seven for Izl > i0.
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y > i0, x = 0 or [z[ > i00 and lar$ z [ < 7/4

For these ranges of variables the following asymptotic

expansions of fo(Z) and go(Z) were used.

f (z) i (i - 2! 4! 6 t~ -- -- + " + . . .) (B.2)
o z z 2 z 4 z 6

3t 5! 71
~ 1 (i - -- + " + . .) (B.3)

go (z) z2 z2 z4 z6

[z[ < i0 and [ar_ z[ < 7/4

For this range of variables a Taylor series expansion

technique was used. For points where y = 0, that is, on the

real axis f (x) and go(X) were calculated using infiniteo

series expansions for 0 < x < i and approximation formulas

developed by Hastings given on page 233 of Reference 16. To

obtain fo(a[l - Mj]) and go(a[l - Mj]) for small M the

following Taylor series expansion in terms of M were made

using (A.14) and (A.15)

I A M 2n I A M 2n+lg[a(l - Mj)] - g(a) + 2n + j 2n+l

n=l n=O (B.4)

f[a(l - Mj)] = f(a) +I Bmn M2n + j I Bmn+iM2n+l

n=l n=0

where -a2n-lf (a) n

o lA2n_ I = + (_l)m+l (2m-2) i 2 (n-m)(2n-l) t a
(2n - I) I m=l

(B.5)

(B.6)
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and

2n n

a go(a) + I (-l)m+l (2m-l) ! a 2(n-m)
A2n --- (2n) ' (2n) '

• m=l "

B = a A_n n -i

B I = ag(a)

(B.7)

(B.8)

This expansion is valid for M < i and therefore was used

to obtain the graphs on Figures 5 and 6.

x = IYland 0 < x < i0

For this range of variables, an infinite series expansion

was used. The series were obtained using formulas on page 232

of Reference 16. This was used to produce the graphs in

Figure 7.

x + +0 0 < y < i0

In this range of variables, formulas (A.II) and (A.12)

were used with the power series expansions for cosh(y),

sinh(y), shi(y) and chi(y). This was used to obtain the

graphs for Figure 8.
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Appendix C: Landau's Problem

In 1963 Drummond 15 stated that Landau's half-space

problem was physically equivalent to the problem of an

infinite charged sheet placed in an infinite plasma at

x = 0 carrying an oscillation surface charge of 2goE ° if the

particles are assumed to pass freely through the charged

sheet. The methods of this thesis are suitable for proving

this statement.

In order to solve this problem we will use Equation (61)

with _ = 0 and the charge sheet placed at the x = 0 in Poison's

equation in the iollowing way.

+_o j_ t_E e o
- f i d v + 2E e 6(x) (C.I)

_x _ o
0 --oo

where the second term on the right is the effect due to the

j_o t
sheet of surface charge 2g E e .

o o

In order to do this problem by the transform method an

important fact must be observed. The value of E(x) as

x ÷ ± _ does not tend to zero but to some constant value.

The reasonableness of this statement comes from the observation

that when there is no plasma the electric field due to the

j_o t J_o t
charge sheet would be E e for 0 < x < +_ and -E e

o o

for 0 > x > - _. Because of the symmetry of the problem

it would be convenient to write E(x, t) in the plasma as

J_o t

E(x, t) = El(X , t) + E sgn(x) e
(C.2)
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where sgn(x) is defined by (92) and E is a boundary value

to be determined. In order to obtain E , Landau assumed

that El(X , t) ÷ 0 as x + = and that the electric displacement

defined by

D -- EM E(x, t) (C.3)

is continuous across the boundary at infinity. For free

space gM= gO and for the plasma gM= g0 go(l - X) = goKo"

This condiLion gives us

E_ = Eo/(l - X) = Eo/K° (C.4)

Knowing that d sgn_x)/dx = 26(x) equations (C.I) and

(61) written in terms of E1 become

Sf e J_ot dF
O

_f + v +-- [E1 + e E sgn(x)] dv_--_ _x m oo
--=0 (c.5)

SEI e +oo j_0ot

ST = _-- f f d v + 26(x) e [E° - Eoo]
O --oo

(C.6)

Taking the combined Fourier Laplace transform of (C.5) and

(C.6) as was done for Equations (66) and (67), (Note:

+oo eJkX 2 1
r sgn(x) dx = --

J jk I--OO

(C.7)

then solving for the transform of E 1 and taking the inverse

transforms (throwing out the transient terms) we obtain
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J_ot +oo (K - K(_, k) -jkx
E1 = E je f oo -- kK K(00, k) e dk

-oo O

(c.8)

which is equivalent to Equation (37) in Landau's paper.
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Appendix D: Characteristic Zeroes

Introduction

Landau stated and Shure showed in his Ph.D. thesis

that there is one characteristic zero kI of the function

K+(_o,k,0) which resides on the immaginary axis above the

< _ if F0(v) is aaxis of reals in the k-plane for _o p

maxwellian distribution. I plan to generalize this result

and prove that this zero exists for any symmetric single

hump function. I will also show that when u is non-zero,
o

this zero moves off the immaginary axis into the left

half of the upper-half complex k-plane.

In order to prove the following two theorems we will

use the ar_ement theorem from Whittaker and Watson 22 which

states that the number of zeroes of a function G(z) enclosed

in some closed contour of the complex z-plane in which G(z)

is analytic is equal to "the change in the arguement of

G(z) around the contour divided by 27" if the order of the

zeroes is unity and if there are no poles within or on the

contour C' It can be further shown that if a mapping

of this contour C' is made from the complex z-plane to the

complex W-plane (where W = G(z)), the number of zeroes

of G(z) within C' is equal to the number of times the

mapping encircles the origin in the W-plane. It is

this mapping procedure which will be used to show that the

particular zero exists.
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k I for u° = 0

Theorem II:

dF

If F (v) and o are continuous single valued
dvo

functions on the real v-axis and F has the following
o

properties

F (v) = F (-v)
o o

-_ OO

J" F (v) dv-- 1
o

-- CO

and F (v) is monotonically increasing when -_ < v < o and
o

monotonically decreasing when 0 < v < _, then K+(_o,k,0)

(_o > 0) has a zero k I = jk ° (where ko is some positive

number), when X > 1.

To prove this theorem we will soon show that there is

one zero of K+(_o,k,0) for X > i above the real k-axis. From

Corollary I of Theorem I following Equation (42), it is

,

evident that if k I is a zero of K+(_o,k,0) then so is -k I.

If there is only one zero above the real k-axis, then kI = -kl;

and consequently k I = Jko. To finish the proof of the theorem,

all that we have to do is prove that there is only one zero

of K+(_o,k,0) above the real k-axis. In order to do this

we will prove that the mapping of a contour which surrounds

the upper k-plane encircles the origin in the W-plane only

once.
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In order to do this we will analyze the function

K+(_o,k,0) in te_s of a different set of variables. Let
ous define the variable S - and the new functionk

V(X,S,uo) where

V _o, k , Uo = _ ) (D.I)

Wewill analyze V(X,S,0) in the complex S-plane instead

of _ in the complex k-plane for convenience. The upper

k-plane maps into the lower S-plane, so that showing that

there is one zero in the lower S-plane meansthat there is

one in the upper k-plane.

Figure 14 shows the C' contour in the S-plane whose

mapping into the W-plane is show in Figure 15. The R +

means that C' is enclosing the entire lower half complex

S-plane. The numbers indicate the corresponding points

on the contour C' and its mapping. The contour in Figure 15

give the general features of the mapping which next will

be discussed in detail.

The mapping W = V(X,S,0) produces the following set

of equations for S on the real axis which follows from the

definition (D.I) and (76).

F (v)- F (S)

Re(W) = i - X S2 i o o dv (D.2)

- _ (v - S) 2
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FIGURE I 5
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Im (W) = _ X S21| dF ol (D.3)

d-7-]v__s

From (D.2) and (D.3), the following statements about W can

As S ÷ - _, Re(W) * i - X, Im(W) ÷ Igl when g + 0

since dFo/dV > 0 for v < 0.

2) As S + + _, Re(W) _ i - X, Im(W)÷ - Igl when e÷ 0

since dF /dv < 0 for v > 0.
o

3) As S ÷ 0, Re(W) ÷ i, Im(W) + 0

4) As ISi + + _, Re(W) ÷ i - X, Im(W) ÷ 0 (-_ < arg(S) < 0)

Statement 4 says that the semicircular contour in the S-plane

maps onto the same point W = 1-X when R ÷ _. Statements i

and 2 say that the contour along the real axis approaches

(i - X) the Re(W) axis from below or above depending

whether S tends to + _ or - _ respectively. Statement 3

shows that the only other point where the mapping crosses the

real W-axis -- that is at S = 0 -- crosses it for Re(W) > 0.

The fact that F (v) and dF /dv are continuous and single
o o

valued assures the analyticity of V(X,S,0) in the complex

S-plane which insures that the mapping of C' onto the

W-plane is a continuous curve. The continuity of the mapping

combined with Statements i through 4 prove that the origin

in the W-plane is encircled.

be made:

i)
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kI for Uo > 0

Theorem III:

If F (v) is a function which satisfies all the conditions
O

specified in Theorem II then K+(_o,k,u o) has a zero k I for

X > 1 for which k I = -_ + j$ where _, 8 > 0.

To prove this theorem we will again analyze V(X,S,Uo).

Proving that SI = _o/kl is below the axis of reals to the

left of the immaginary axis shows that k I = - _ + j$. In

order to show that SI is where we said, we will make a

mapping from the S to the W-plane of the contour C'' which

encircles the left side of the lower half plane. Figure 16

shows the contour C'' in the S-plane and Figure 17 shows its

mapping onto the W-plane. Again the numerals indicate the

corresponding points between the two graphs.

For the contour along the real axis the following

equation gives the mapping

Re(W) = i - X S 2

+ _ f(v) - F(S - u )
f o (D.4)

-_(v-S+u) 2
O

dF

Im(W) = _ X S2 o (D.5)
dv

V ----"S-u
o

For the contour C'' along the immaginary axis the following

equations describe the mapping
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+oo (v + u o) (dFo/dV)dv
Re(W) = i + X S 2 /

O

-_ (v + Uo)2 + S zo

(D.6)

+oo (dFo/dV) dv
Im(W) = -X S 3 f (D.7)

o __ (v + Uo)2 + S 2o

because S = -jS where S > 0. Statements i and 4 describing
o o

the mapping used to prove Theorem II apply here also. We

must show statements which correspond to Statements 2 and

3. We must prove that:

5) As S ÷ + _, Re(W) ÷ 1 - X Im(W) ÷ - IEl.
o

6) If Im(W) = 0 then Re(W) > 0.

Statements 5 and 6 combined with i and 4 and the continuity

of the mapping proves that the origin has been encircles when

X > i.

It is relatively easy to prove Statement 6. If Im(W) = 0

then we can write

+_ (dFo/dV) dv
X S 2 f = 0 (D.8)

o __ (v + Uo)2 + S 2o

If we multiply (D.8) by u
o

and subtract it from (D.6) we get

+oo v(dFo/dV) dv
Re(W) = 1 + X S 2 f (D.9)

o

-_ (v + Uo )2 + S 2o

Since the numerator and denominator of the integrand of
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(D.9) are always positive, Re(W)> 0. Statement 6

has been proved.

In order to prove Statement 5, an asymtotic expansion

of Im(W) must be madeas S ÷ _. The asymptotic expansion
o

will be made using the following formula.

1 Z z
= 1 + Z + (D.10)

I+Z I+Z

Using (D.10), (D.7) can be rewritten as

+oo (v + u^) _ (dF^/dv) dv
i _w)-m'-" = _A u X-- O _ "_

S S _ _oo (v + u o) 2 (D.ll)
0 0 i +

S 2
o

As S _ + _ the integral on the right hand side of (D.II)
o

tends to the constant value 4(3 < v 2 > + Uo2) Uo' where

<v 2> represents the second velocity moment of F (v). This
o

shows that the first term on the right hand side dominates

if we take S sufficiently large. Consequently we have shown
o

that Im(W) ÷ - [E l as S _ + _. We have therefore proved
o

that the origin in the W-plane is encircled for X > i, and

consequently proved Theorem III.
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Errata Sheet for Scientific Report No. 316

Page 5:

Page 6:

Page 20:

Page 28:

Second line below equation (10)
2

c0

x- P

o

Equation (13) An open parenthesis should be before sin a
+"

l_.quation (56) should have AE£

Equation (64) should have

Page 30:

Page 44:

Page 56:

Page 69:

Page 77:

Sentence before equation (70) should be:

"Solve for fl in equation (68) and insert in (69) which is

then solved for qb1 to give... "

Second line below equation (104) the expression in parenthesis

should be: "(the infinite driving frequency limit)"

Caption to Figure 9 should read

_Z versus O °

Second line above (130) the word should be "separation"

Third line of third paragraph names should be Krook and

Fokker-Planck.


